
Building Global HEP
Systems on Kerberos

Matt Crawford
Fermilab Computer Security



2004-09-29 Matt Crawford, Fermilab 1

What this talk is…

• A variety of use cases for secure
access by far-flung collaborations.

• An exploration of the security problems
distributed systems must address.

• Examples of Kerberos-based solutions
to those problems.



2004-09-29 Matt Crawford, Fermilab 2

What this talk is not…

• Advocacy of one security mechanism
over another.

• The final word on any of the topics that
follow.



2004-09-29 Matt Crawford, Fermilab 3

Quick Contrast of Kerberos
and PK authentication

Fresh CRLs or OCSP must
be on-line to client & server

KDC must be on-line to client

Proxy certificates reduce use
of long-term client secret

TGTs reduce use of long-
term client secret

CAs’ public keys known to all
parties

KDC knows all parties’ keys

CA issues certificates
asserting public key binding

KDC issues tickets asserting
secret key possession

End Entity holds private keyPrincipal holds secret key
PKIKerberos



2004-09-29 Matt Crawford, Fermilab 4

Problems to be Solved

• Web authentication
• Limited rights
• Unattended processes
• Shared agent authentication
• Long-queued and long-running jobs



2004-09-29 Matt Crawford, Fermilab 5

Web Authentication

• Client host mounts /afs.
• User visits

file:///afs/fnal.gov/files/expwww/…

• Browser knows nothing.
• Yes, it is a cheap trick.



2004-09-29 Matt Crawford, Fermilab 6

Limited Rights

• Limited implementation of limited rights
– Kernel support is typically poor-to-none
– Storage systems are more flexible

• user/afs/hostname@REALM gets AFS
the access of user@REALM.

• Kerberos tickets (& X.509 certificates)
have room to invent something more.



2004-09-29 Matt Crawford, Fermilab 7

Unattended Processes

• Unattended user processes (started by cron,
for example) may need authenticated access.

• Using the user’s own identity masks the
dependency on host’s integrity.
– User does not have control of a stored secret key.
– Keeping the user’s own long-term key on-line is

therefore not an option!
• How to manage this risk?

– Make it explicit!



2004-09-29 Matt Crawford, Fermilab 8

Expose the Risk

• Our solution:
– user@REALM is authorized to create &

destroy principals named
user/cron/host@REALM

– Keys are stored in private disk of host.
– Initially these principals have no

authorization, or have only AFS rights.
– Can be added to ACL where needed.



2004-09-29 Matt Crawford, Fermilab 9

Shared Agents

• Batch system or analysis farm initiates
processes on behalf of many users.

• User processes may execute in many places.
• Users do not control (or know?) the security of

their execution environment.
• User’s credentials could be compromised by

an outsider or by another insider.
• Would like to be able to revoke and repair

credentials put at risk.



2004-09-29 Matt Crawford, Fermilab 10

Compute Farms

• Jobs on Fermilab farm f authenticate to
services, claiming to act for user u, with
principal u/f/farm@FNAL.GOV.

• Job submission is Kerberos-authenticated.
• Batch system obtains credentials for job.
• Farm principals are created by helpdesk,

keys installed by support staff.
Does not scale !



2004-09-29 Matt Crawford, Fermilab 11

Kerberized CAF System

• The CAF model is replicated ~25 times
around the world.

• For each instance, security staff
creates a special “headnode principal”
which has the rights to create and
destroy “CAF user principals.”

• As usual, CAF user principals have no
rights except what users grant them.



2004-09-29 Matt Crawford, Fermilab 12

Summary

• Kerberos is already widely used in HEP.
• It has been easy to build naming-based

schemes to distinguish users and agents.
– This allows management of risk in an

environment of insecure systems, and a
crude form of limited-rights authorization.

– No protocol changes; some work on ACLs
on the Kerberos administrative server.


